Examining the Role of User Experience and Interface Design in Digital Wallet Adoption: An Empirical Analysis

Monalkumar B. Sathvara¹, Bhagvanbhai M. Karnavat ²

Research Scholar, Faculty of Management Studies, Sankalchand Patel University, Visnagar, India ¹
Associate Professor, Dept. of Business Management, Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar, India ²

mb.sathavara11@gmail.com¹, bmkmba spce@spu.ac.in²

Abstract: The world of payments has changed dramatically as a result of the quick development of financial technology, or FinTech, with digital wallets becoming a key component of the cashless economy. In the larger framework of the FinTech revolution, this study investigates the relationship between innovation, shifting consumer behavior, and the use of digital wallets. By assessing major technological, behavioral, and regulatory trends, the research shows the elements impacting user adoption, trust, security concerns, and post-adoption engagement. Understanding how digital wallets are changing user experience, financial inclusion, and convenience is emphasized. The paper intends to give a thorough overview of the potential and difficulties that digital wallet providers and users face in an increasingly digital financial ecosystem, drawing on current empirical findings.

Keywords: Digital Wallets, FinTech, Consumer Behavior, Cashless Economy, Technology Adoption

I. INTRODUCTION

The global financial landscape has undergone a paradigm shift in recent years, largely driven by rapid technological advancements and evolving consumer expectations. At the core of this transformation lies the financial technology (FinTech) revolution—an umbrella term that encompasses innovative financial services driven by technology. One of the most notable and widely adopted FinTech innovations is the digital wallet. Digital wallets, also known as e-wallets, are applications or platforms that allow users to conduct electronic transactions, store payment information, and manage funds securely through mobile devices or computers.

The digital wallet ecosystem is growing due to the demand for cashless, contactless, and real-time payments. Supported by governments, banks, and tech companies, platforms like Paytm, Google Pay, and Apple Pay are changing consumer behavior, especially in regions with high mobile use but limited banking. Adoption is driven by usefulness, ease, trust, security, and social influence. The COVID-19 pandemic further boosted digital wallet use. However, issues like user satisfaction, privacy, and regulations remain. This study explores adoption trends, user behavior, and the future impact of digital wallets in a cashless economy.

1.1. BACKGROUND OF THE STUDY:

Payment systems have evolved with society and technology, moving from barter and cash to digital wallets. These wallets became popular due to smartphones, internet access, and initiatives like Digital India. Once seen as high-tech tools, they are now widely used for fast, easy, and secure payments. FinTech has changed how finance works, with digital wallets offering features like one-click payments, QR codes, and rewards. In developing countries, they help include people without bank access. However, issues like security, regulation, and digital awareness remain. This study explores what drives people to adopt and keep using digital wallets as part of the move toward a cashless economy.

1.2. Definition of Digital Wallets

"A digital wallet, also referred to as an e-wallet, is a virtual platform or software that stores users' payment information, enabling them to make electronic transactions easily and securely". Essentially, digital wallets replace the need for carrying physical cash or credit cards, as they store payment credentials, such as credit/debit card numbers, bank account details, and digital currencies, on a mobile device or cloud-based platform (Liébana-Cabanillas et al., 2017). A key feature of digital wallets is their security measures, such as encryption, two-factor authentication (2FA), and biometrics (fingerprint, face recognition), which ensure the safety of transactions and protect users from fraud.

1.2.1. Digital wallets can store several types of information:

- Bank account details: These are linked to the wallet to facilitate fund transfers and payments.
- Credit and debit card information: This allows users to make payments without entering card details every time.
- Cryptocurrencies: Some wallets are designed to store and manage digital currencies like Bitcoin, Ethereum, etc.
- Identification data: Some digital wallets also store IDs, allowing users to carry their identification digitally (e.g., government IDs, loyalty cards, etc.).

1.3. Scope of Digital Wallets

The scope of digital wallets extends far beyond simple payments, as these systems have evolved into comprehensive financial tools that offer a wide range of services. Originally designed to facilitate online shopping, digital wallets have now expanded into various domains, including retail, transportation, peer-to-peer (P2P) transfers, and even investment management.

- Retail & E-Commerce: Digital wallets enable consumers to save payment details for speedy online purchases, guaranteeing quicker checkout times and improved user convenience (Zhou, 2014).
- In-Store Transactions: Digital wallets allow contactless payments at real locations using Near Field Communication (NFC) and QR code technology. Wallets that are often used for in-store transactions include "Apple Pay, Google Pay, and Samsung Pay" (Liébana-Cabanillas et al., 2017).
- **Peer-to-peer Transfers:** With certain wallets, users can utilize their mobile devices to transmit money to friends, relatives, or acquaintances. P2P transfers frequently employ services like PayPal, Venmo, and Zelle (Kou et al., 2021).
- **Bills and Utilities**: Many digital wallets also offer features for users to pay bills (e.g., electricity, mobile phone bills) directly from the wallet, further enhancing their utility (Arora & Sandhu, 2018).
- Integration with Financial Services: Access to various financial services, including investment products, insurance, and loans, is now possible through digital wallets. Some wallets, for instance, let users manage mutual fund investments or purchase and sell cryptocurrencies (Gomber et al., 2018).
- **Financial Inclusion:** "Digital wallets have emerged as a crucial instrument for financial inclusion in areas with restricted access to conventional banking infrastructure. Digital wallets help marginalized groups by providing access to financial services via mobile devices (Suri & Jack, 2016)."

1.4. Role of Digital Wallets in a Cashless Economy

A cashless economy is one where financial transactions are conducted primarily through digital means, eliminating or reducing the use of physical cash. Digital wallets are key enablers of this transformation. They simplify daily transactions, reduce operational costs associated with handling cash, and allow better tracking of expenditures for both individuals and businesses (Arora & Sandhu, 2018).

In India, for instance, the move toward a cashless economy gained momentum after the 2016 demonetization and the launch of the Digital India initiative. Digital wallets like Paytm and PhonePe became household names, particularly for small-value retail transactions. Their integration with government services, merchant payments, and financial management tools further enhances their role in promoting a digital economy.

1.5. Innovation in Digital Wallets

Digital wallets have undergone continuous innovation, incorporating emerging technologies and offering enhanced features that contribute to a more seamless, secure, and personalized user experience. The key innovations are detailed below:

- **1.5.1.** Integration of Emerging Technologies (e.g., Biometrics, Blockchain, AI): Digital wallets are increasingly integrating cutting-edge technologies to improve security, convenience, and functionality.
 - **Biometrics**: The use of biometric authentication (e.g., fingerprint recognition, facial recognition) has become common in digital wallets to enhance security. Biometrics offer a higher level of authentication than traditional passwords or PINs, ensuring that only the authorized user can access and make transactions (Al-Khateeb et al., 2019).
 - **Blockchain**: Blockchain technology is integrated into digital wallets to offer enhanced transparency, security, and immutability of transaction records. It enables secure, decentralized transactions and provides solutions for fraud prevention and ensuring data integrity (Narayanan et al., 2016).
 - Artificial Intelligence (AI): AI is utilized in digital wallets to personalize user experiences, analyze transaction patterns, and detect fraud. AI can predict user preferences and offer tailored recommendations for payments, promotions, or rewards (Gomber et al., 2018).
- **1.5.2 Interoperability with Banking and Non-Banking Platforms:** Interoperability refers to the ability of digital wallets to work seamlessly with both banking and non-banking platforms, making them highly versatile and accessible for a wide

range of users. This integration ensures that users can transfer funds, make payments, or access services across different platforms and financial institutions without compatibility issues. For example, users can link their digital wallet to traditional bank accounts, peer-to-peer payment systems, or even crypto currency platforms, allowing for a unified and comprehensive financial ecosystem. This also includes integration with non-financial services like retail or utility bill payments, further improving the convenience of digital wallets (Kou et al., 2021).

- **1.5.3. Personalization and User-Centric Design** Digital wallets are evolving to become more user-centric, with personalization playing a significant role in improving customer experience. By using data analytics and AI, digital wallets can tailor their interface, services, and product offerings to suit individual preferences. For example, digital wallets may provide customized offers, discounts, or loyalty rewards based on a user's transaction history, location, or interests. Furthermore, some wallets allow users to customize their dashboards, choosing the layout, favorite payment methods, and preferred currency options (Liébana-Cabanillas et al., 2017). This level of personalization encourages deeper user engagement and enhances overall satisfaction.
- **1.5.4.** Use Cases in Retail, Transport, E-Commerce, and P2P Transfers: Digital wallets have diverse use cases across various industries, expanding their role beyond simple mobile payments:
 - Retail: Digital wallets allow consumers to make quick and secure payments at both physical and online stores. With contactless technology like NFC (Near Field Communication), customers can make in-store purchases with a simple tap of their mobile devices, minimizing waiting times and enhancing the overall shopping experience.
 - **Transport**: In the transport sector, digital wallets are used for ticketing, fare payments, and real-time tracking. For example, apps like Google Pay and Apple Pay integrate with public transportation systems, allowing commuters to pay bus or metro fares digitally (Zhou, 2014).
 - E-Commerce: In online shopping, digital wallets expedite the checkout process, enabling secure and fast transactions. They often store multiple payment methods, which makes them convenient for users who shop frequently (Arora & Sandhu, 2018).
 - **P2P Transfers**: Digital wallets also enable "peer-to-peer (P2P)" transfers, allowing users to send money to friends or family instantly. Platforms like Venmo, PayPal, and Cash App are commonly used for P2P transactions, making it easy for users to split bills or pay for services without needing to handle cash.

II. OBJECTIVES OF STUDY

- 1. To examine the main elements impacting consumers' adoption of digital wallets.
- 2. To investigate how cutting-edge technologies like blockchain, AI, and biometrics are promoting innovation in digital wallets.
- 3. To examine the impact of digital wallets on consumer behavior in the context of convenience, security, and trust.
- 4. To assess the challenges and barriers faced by consumers and businesses in adopting digital wallet technologies.
- 5. To evaluate the future trends and potential of digital wallets in contributing to the growth of a cashless economy.

III. SCOPE OF THE STUDY

This study focuses on exploring the role of digital wallets in the growing FinTech revolution, particularly in the context of a cashless economy. It covers the adoption of digital wallets in both developed and emerging markets, with an emphasis on new technologies like biometrics, blockchain, and artificial intelligence (AI). The research will examine how these technologies influence consumer behavior, including factors like trust, security, and ease of use. It will also look at the use of digital wallets across industries such as retail, e-commerce, transportation, and peer-to-peer payments. The study will cover trends up until 2025, aiming to understand the future potential of digital wallets in shaping a cashless society.

IV. LITERATURE REVIEW

Digital wallets have emerged as a critical component of the FinTech revolution, facilitating cashless transactions and offering consumers a more convenient and secure alternative to traditional payment methods. The increasing adoption and innovation in digital wallets have transformed financial ecosystems globally. This literature review examines the adoption factors, innovative technologies shaping digital wallets, and the consumer behavior that influences their use.

The uptake of digital wallet technology

Digital wallet adoption has been extensively examined using technology acceptance models, with a focus on perceived security and convenience of use (Zhou, 2014). According to Davis (1989), perceived utility is still a major factor in

consumer adoption; people are more inclined to embrace digital wallets if they believe they are safe and convenient. According to another research by Liébana-Cabanillas et al. (2017), adoption is significantly hampered by the perceived danger of fraud; however, these worries are being allayed by the increasing integration of security measures like biometrics. Additionally, building customer confidence in mobile payment systems requires technological dependability and trust in financial institutions (Gomber et al., 2018).

A. Advancements in Digital Wallets

The incorporation of cutting-edge technology like blockchain, artificial intelligence (AI), and biometrics has sparked innovation in digital wallets. While blockchain is transforming payment systems by offering decentralized transaction verification, which ensures transparency and lowers costs, biometric authentication techniques like fingerprint and facial recognition are improving security (Narayanan et al., 2016). According to Gomber et al. (2018), artificial intelligence has been essential in enhancing digital wallet platforms' fraud detection, customer assistance, and personalized offerings. Additionally, users can utilize digital wallets across a variety of industries, including retail, transportation, and healthcare, thanks to the interoperability between banking and non-banking systems, which further increases their usefulness (Kou et al., 2021).

B. Consumer Patterns in the Use of Digital Wallets

For digital wallets to be successfully adopted and used, consumer behavior is essential. Perceived risk, particularly with regard to security and privacy, has a major influence on consumers' readiness to accept mobile payment technologies, claim Liébana-Cabanillas et al. (2017). However, higher adoption rates have been attributed to growing confidence in these technologies, which has been fueled by improvements in security features (Arora & Sandhu, 2018). According to Zhou (2014), social influence also affects consumer choices because people are more inclined to use digital wallets after seeing their friends use them. Additional elements that influence customer behavior toward the adoption of mobile payment solutions are the convenience and ease of use offered by digital wallets (Zhou, 2014).

C. Future Trends and Implications of Digital Wallets

Digital wallets' future depends on their ongoing development and incorporation into the larger cashless economy. Mobile payments are essential for promoting financial inclusion, especially in areas with restricted access to traditional banking services, as Suri and Jack (2016) point out. Digital wallets increase total economic participation by providing unbanked persons with a means of interacting with the financial system. Additionally, it is anticipated that digital wallets would be crucial in decreasing reliance on currency, simplifying financial transactions, and improving productivity (Arora & Sandhu, 2018). Digital wallets' growing popularity across a range of industries and their capacity to provide individualized experiences are probably going to propel their uptake in the future and have an impact on the development of the financial sector.

V. RESEARCH METHODOLOGY

A quantitative research methodology will be used in the study to evaluate consumer behavior, innovation, and uptake of digital wallets in the North Gujarat region. Data on the main determinants of digital wallet usage, including security, convenience, and user experience, will be gathered using a descriptive research design. Convenience sampling was used to choose 150 respondents, the target sample size, in order to guarantee a wide representation of people who use or are aware of digital wallet services. The main instrument for gathering data will be a standardized questionnaire that asks about demographic information, adoption-influencing factors, security perceptions, and the function of cutting-edge technology like "biometrics and AI." Both in-person interviews and online surveys will be used to gather the data, making it accessible to the region's diverse population. Before being distributed widely, the questionnaire will go through a pilot test to guarantee validity and reliability. Inferential statistics like regression analysis will be used to look at relationships between various variables, while descriptive statistics will be used to summarize the responses. The study will help understand consumer behavior in the changing cashless economy and offer insightful information about the factors that promote or impede the adoption of digital wallets in North Gujarat.

VI. DATA ANAYSIS & INTERPRETATION

TABLE I: DEMOGRAPHIC ANALYSIS

Demographic Variable	Category	Frequency (N=150)	Percentage (%)
Gender	Male	90	60.0%
	Female	60	40.0%
Age Group	18–25 years	45	30.0%
	26–35 years	55	36.7%
	36–50 years	35	23.3%
	50+ years	15	10.0%
Occupation	Student	40	26.7%
_	Working Professional	60	40.0%
	Business Owner	30	20.0%
	Others	20	13.3%
Income Level (Monthly)	Below Rs.20,000	35	23.3%
	Rs.20,000 - Rs.50,000	45	30.0%
	Rs.50,000 - Rs.1,00,000	40	26.7%
	Above Rs.1,0,000	30	20.0%

TABLE II: DESCRIPTIVE ANALYSIS

		Response	Frequency (N=150)		Percentage	
1	Digital Wallet	Yes	135 15		90%	
	Usage	No			10%	
	Digital Wallet			uency	Percentage of Respondents	
2	Platforms Used :(Google Pay	1	10	73.3%	
	Multiple Responses	PhonePe	g	95	63.3%	
	Allowed)	Paytm	8	30	53.3%	
	Allowed)	Others	20		13.3%	
	Adoption Factors	Factor	Mean Score		Standard Deviation	
	(Likert Scale: 1–	Security	4.3 4.2 3.9		0.7	
3	5)	Ease of Use			0.8	
		Promotions/Discounts			0.9	
		Technology	Response		% Aware	
	Awareness of		Yes	No		
	Emerging	Biometric Authentication	120	30	80%	
4	Technologies	Blockchain	60	90	40%	
		Artificial Intelligence	85	65	56.7%	
	Perceived	Response	Frequenc	cy (N=150)	Percentage	
	Benefits –	Yes	128		85.3%	
5	Convenience	No	22		14.7%	
	Barriers to	Barrier	45 30 50 40 35		Percentage of Respondents (N=150)	
	Adoption	Security concerns			30%	
	(Multiple	Lack of trust in digital platforms			20%	
	Responses	Poor internet connectivity			33.3%	
6	Allowed)	Lack of awareness of features			26.7%	
		None			23.3%	

The demographic profile of the 150 respondents reveals that digital wallet usage is predominantly driven by young, male, working professionals belonging to the middle-income group in the North Gujarat region. The highest usage is observed among individuals aged 26–35 years, followed by students and business owners, indicating strong adoption among economically and digitally active users. Additionally, a majority of users fall within the Rs.20,000 to Rs.1, 00,000 income bracket, reflecting a growing acceptance of digital wallets among the middle-income population. Overall, the findings suggest that digital literacy, age, occupation, and income play a significant role in influencing digital wallet adoption.

Descriptive Analysis:

respondents reported using digital wallets, indicating strong adoption within the surveyed population in North Gujarat. Google Pay is the most widely used platform, followed by PhonePe and Paytm. A small segment also uses other digital wallets, indicating a preference for major players in the region. Security and ease of use are the most influential adoption factors. Trust is also rated high, while promotions play a slightly lesser role but still contribute significantly to usage decisions. Most users are aware of biometric authentication, indicating familiarity with secure access features. However, awareness of blockchain and AI remains moderate, pointing to a knowledge gap in advanced technology integrations. A large majority believe digital wallets are more convenient than traditional payment methods, reinforcing their growing relevance in daily transactions. Internet connectivity and security concerns are the leading barriers to adoption. Interestingly, 23.3% reported no major issues, showing an overall smooth experience for many users.

TABLE III: RELIABILITY TEST – CRONBACH'S ALPHA

Test	Value
Cronbach's Alpha	0.812
No. of Items	4

(Source: SPSS 27.0)

Cronbach's Alpha = 0.812, indicating good internal consistency among the adoption factor items. Values > 0.7 are acceptable in social science research

TABLE IV: ANOVA – COMPARISON BY AGE GROUP

Source	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.73	3	1.91	4.25	0.007**
Within Groups	65.22	146	0.45		
Total	70.95	149			

(**Source:** SPSS 27.0)

With p = 0.007 < 0.05, the ANOVA test reveals a statistically significant difference in trust levels across different age groups.

Chi-Square Test – Gender vs. Digital Wallet Usage

TABLE V: CROSS-TABULATION:

Gender	Uses Wallet (Yes)	Does Not Use (No)	Total
Male	85	5	90
Female	50	10	60
Total	135	15	150

(Source: SPSS 27.0)

TABLE VI: CHI-SQUARE OUTPUT:

Test	Chi-Square Value	df	Sig. (p-value)	
Pearson Chi-Square	6.32	1	0.012**	

(**Source:** SPSS 27.0)

With p = 0.012, there is a significant association between gender and digital wallet usage, implying males are slightly more likely to adopt digital wallets.

VII. FINDINGS

- 90% of respondents use digital wallets, showing high adoption in the North Gujarat region.
- Google Pay is the most used platform, followed by PhonePe and Paytm.
- Key factors influencing adoption are security, ease of use, and trust in the platform.
- Most users know about biometric features; fewer are aware of blockchain and AI integration.
- Users find digital wallets more convenient than cash or cards.
- Users generally trust digital wallet security but some still have concerns about privacy and cyber threats.
- Challenges include internet issues, security concerns, and lack of awareness of full features.
- Younger users (18–35 years) are the most active users; males slightly outnumber females in adoption.

VIII. CONCLUSION

The study highlights that digital wallets have become a vital component of the FinTech revolution, especially in the ongoing shift toward a cashless economy. With the widespread use of smartphones and increasing internet accessibility, digital wallets are no longer a luxury but a necessity for modern financial transactions. The findings reveal a high adoption rate among users, driven mainly by convenience, security, and trust in platforms.

Innovation in digital wallets—through features like biometric security, instant payments, and rewards—has further enhanced user experience and engagement. However, the study also points to key challenges such as limited awareness of advanced technologies, digital literacy gaps, and security concerns that need to be addressed for broader inclusion and sustained usage.

In conclusion, digital wallets are transforming how consumers interact with money. Their continued success depends on technological advancement, user trust, and strategic efforts by FinTech firms and policymakers to promote safe, inclusive, and user-friendly financial ecosystems.

REFERENCES

- [1] Chawla, D., & Joshi, H. (2019). The moderating effect of demographic variables on mobile wallet adoption: An empirical study. Global Business Review, 20(3), 702–717. https://doi.org/10.1177/0972150919830861
- [2] Kou, G., Chao, X., Peng, Y., & Alsaadi, F. E. (2021). *Machine learning in FinTech: An overview*. Information Fusion, 76, 118–134. https://doi.org/10.1016/j.inffus.2021.05.004
- [3] Ryu, H. S. (2018). *Understanding benefit and risk framework of FinTech adoption: Comparison of early adopters and late adopters*. Telematics and Informatics, 35(8), 2122–2132. https://doi.org/10.1016/j.tele.2018.07.019
- [4] Singh, S., & Rana, N. P. (2021). FinTech and digital banking: An integrated framework for understanding post-adoption behavior. Journal of Retailing and Consumer Services, 61, 102541. https://doi.org/10.1016/j.jretconser.2021.102541
- [5] Zhou, T. (2014). *Understanding the determinants of mobile payment continuance usage*. Industrial Management & Data Systems, 114(6), 936–951. https://doi.org/10.1108/IMDS-02-2014-0054
- [6] Liébana-Cabanillas, F., Munoz-Leiva, F., & Sánchez-Fernández, J. (2017). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 11, 907–931. https://doi.org/10.1007/s11628-016-0124-1

- [7] Arora, S., & Sandhu, S. (2018). Usage-based segmentation for digital wallet users. Global Business Review, 19(3 suppl), S90–S113. https://doi.org/10.1177/0972150918757881
- [8] Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services. Journal of Management Information Systems, 35(1), 220–265. https://doi.org/10.1080/07421222.2018.1440766
- [9] Kou, G., Chao, X., Peng, Y., & Alsaadi, F. E. (2021). "Machine learning in FinTech": An overview. Information Fusion, 76, 118–134. https://doi.org/10.1016/j.inffus.2021.05.004
- [10] Suri, T., & Jack, W. (2016). "The long-run poverty and gender impacts of mobile money". Science, 354(6317), 1288–1292. https://doi.org/10.1126/science.aah5309
- [11] Zhou, T. (2014). "Understanding the determinants of mobile payment continuance usage". Industrial Management & Data Systems, 114(6), 936–951. https://doi.org/10.1108/IMDS-02-2014-0054
- [12] Al-Khateeb, J., Al-Muhtadi, J., & Al-Luhaiby, R. (2019). *A review of biometric authentication in mobile payment systems*. International Journal of Computer Applications, 975, 12–19. https://doi.org/10.5120/ijca2019918729
- [13] Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Shasha, H. (2016). *Bitcoin and cryptocurrency technologies. Princeton University Press.*
- [14] Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). *On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services.* Journal of Management Information Systems, 35(1), 220–265. https://doi.org/10.1080/07421222.2018.1440766
- [15] Kou, G., Chao, X., Peng, Y., & Alsaadi, F. E. (2021). *Machine learning in FinTech: An overview*. Information Fusion, 76, 118–134. https://doi.org/10.1016/j.inffus.2021.05.004
- [16] Liébana-Cabanillas, F., Munoz-Leiva, F., & Sánchez-Fernández, J. (2017). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 11, 907–931. https://doi.org/10.1007/s11628-016-0124-1
- [17] Arora, S., & Sandhu, S. (2018). *Usage-based segmentation for digital wallet users*. Global Business Review, 19(3 suppl), S90–S113. https://doi.org/10.1177/0972150918757881
- [18] Zhou, T. (2014). *Understanding the determinants of mobile payment continuance usage*. Industrial Management & Data Systems, 114(6), 936–951. https://doi.org/10.1108/IMDS-02-2014-0054
- [19] Zhou, T. (2014). *Understanding the determinants of mobile payment continuance usage*. Industrial Management & Data Systems, 114(6), 936–951. https://doi.org/10.1108/IMDS-02-2014-0054
- [20] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
- [21] Liébana-Cabanillas, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2017). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 11, 907–931. https://doi.org/10.1007/s11628-016-0124-1
- [22] Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services. Journal of Management Information Systems, 35(1), 220–265. https://doi.org/10.1080/07421222.2018.1440766
- [23] Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Shasha, H. (2016). Bitcoin and cryptocurrency technologies. Princeton University Press.
- [24] Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services. Journal of Management Information Systems, 35(1), 220–265. https://doi.org/10.1080/07421222.2018.1440766
- [25] Kou, G., Chao, X., Peng, Y., & Alsaadi, F. E. (2021). *Machine learning in FinTech: An overview*. Information Fusion, 76, 118–134. https://doi.org/10.1016/j.inffus.2021.05.004
- [26] Liébana-Cabanillas, F., Munoz-Leiva, F., & Sanchez-Fernandez, J. (2017). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 11, 907–931. https://doi.org/10.1007/s11628-016-0124-1
- [27] Arora, S., & Sandhu, S. (2018). *Usage-based segmentation for digital wallet users*. Global Business Review, 19(3_suppl), S90-S113. https://doi.org/10.1177/0972150918757881
- [28] Zhou, T. (2014). *Understanding the determinants of mobile payment continuance usage*. Industrial Management & Data Systems, 114(6), 936–951. https://doi.org/10.1108/IMDS-02-2014-0054

- [29] Suri, T., & Jack, W. (2016). *The long-run poverty and gender impacts of mobile money*. Science, 354(6317), 1288–1292. https://doi.org/10.1126/science.aah5309
- [30] Arora, S., & Sandhu, S. (2018). *Usage-based segmentation for digital wallet users*. Global Business Review, 19(3_suppl), S90-S113. https://doi.org/10.1177/0972150918757881