[1] A. Dwarampudi and M. K. Yogi, “Application of Federated Learning for Smart Agriculture System,” Int. J. Inf.
Technol. Comput. Eng., no. 43, pp. 36–47, Apr. 2024, doi: 10.55529/ijitc.43.36.48.
[2] S. Getahun, H. Kefale, and Y. Gelaye, “Application of Precision Agriculture Technologies for Sustainable Crop
Production and Environmental Sustainability: A Systematic Review,” TheScientificWorldJournal, vol. 2024. p.
2126734, 2024, doi: 10.1155/2024/2126734.
[3] M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing Federated Machine Learning and
Its Use in Diseases Prediction,” Sensors, vol. 23, no. 4. MDPI, 01-Feb-2023, doi: 10.3390/s23042112.
[4] V. E. B. Ahmed A Elngar, Diego Oliva, Artificial intelligence using federated learning, 1st Editio. CRC Press,
2024.
[5] B. Yurdem, M. Kuzlu, M. K. Gullu, F. O. Catak, and M. Tabassum, “Federated learning: Overview, strategies,
applications, tools and future directions,” Heliyon, vol. 10, no. 19. Elsevier Ltd, 15-Oct-2024, doi:
10.1016/j.heliyon.2024.e38137.
[6] K. R. Žalik and M. Žalik, “A Review of Federated Learning in Agriculture,” Sensors, vol. 23, no. 23.
Multidisciplinary Digital Publishing Institute (MDPI), 01-Dec-2023, doi: 10.3390/s23239566.
[7] A. Naseer, M. Shmoon, T. Shakeel, S. Ur Rehman, A. Ahmad, and V. Gruhn, “A Systematic Literature Review of
the IoT in Agriculture—Global Adoption, Innovations, Security, and Privacy Challenges,” IEEE Access, vol. 12,
no. April, pp. 60986–61021, 2024, doi: 10.1109/ACCESS.2024.3394617.
[8] E. Jafarigol, T. B. Trafalis, T. Razzaghi, and M. Zamankhani, “Exploring Machine Learning Models for
Federated Learning: A Review of Approaches, Performance, and Limitations,” in Dynamics of Disasters: From
Natural Phenomena to Human Activity, I. S. Kotsireas, A. Nagurney, P. M. Pardalos, S. W. Pickl, and C.
Vogiatzis, Eds. Cham: Springer Nature Switzerland, 2024, pp. 87–121.
[9] A. Durrant, M. Markovic, D. Matthews, D. May, J. Enright, and G. Leontidis, “The Role of Cross-Silo Federated
Learning in Facilitating Data Sharing in the Agri-Food Sector,” Apr. 2021, doi: 10.1016/j.compag.2021.106648.
[10] E. Sharma, R. C. Deo, C. P. Davey, B. D. Carter, and S. Salcedo-Sanz, “Towards next-generation federated
learning: A case study on privacy attacks in artificial intelligence systems,” in Proceedings - 2024 IEEE
Conference on Artificial Intelligence, CAI 2024, 2024, pp. 1446–1452, doi: 10.1109/CAI59869.2024.00259.
[11] G. Mohyuddin, M. A. Khan, A. Haseeb, S. Mahpara, M. Waseem, and A. M. Saleh, “Evaluation of Machine
Learning Approaches for Precision Farming in Smart Agriculture System: A Comprehensive Review,” IEEE
Access, vol. 12, pp. 60155–60184, 2024, doi: 10.1109/ACCESS.2024.3390581.
[12] A. Li, M. Markovic, P. Edwards, and G. Leontidis, “Model pruning enables localized and efficient federated
learning for yield forecasting and data sharing,” Expert Syst. Appl., vol. 242, no. Andy Li, pp. 1–31, 2024, doi:
10.1016/j.eswa.2023.122847.
[13] B. Ghasemkhani, O. Varliklar, Y. Dogan, S. Utku, and K. U. Birant, “Federated Multi-Label Learning ( FMLL ):
Innovative Method for Classification Tasks in Animal Science,” pp. 1–27, 2024.
[14] G. Idoje, T. Dagiuklas, and M. Iqbal, “Federated Learning: Crop classification in a smart farm decentralised
network,” Smart Agric. Technol., vol. 5, p. 100277, Jun. 2023, doi: 10.1016/j.atech.2023.100277.
[15] A. Mukherjee and R. Buyya, “Federated Learning Architectures: A Performance Evaluation with Crop Yield
Prediction Application,” 2024, [Online]. Available: http://arxiv.org/abs/2408.02998.
[16] D. Gardas and R. Karthi, “Crop Irrigation Advisory System Using Federated Logistic Regression,” in
Computational Intelligence in Data Science, 2024, pp. 329–341.
[17] B. Yurdem, M. Kuzlu, M. K. Gullu, F. O. Catak, and M. Tabassum, “Federated learning: Overview, strategies,
applications, tools and future directions,” Heliyon, vol. 10, no. 19, p. e38137, 2024, doi:
10.1016/j.heliyon.2024.e38137.
[18] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated Learning via Over-the-Air Computation,” IEEE Trans. Wirel.
Commun., vol. 19, no. 3, pp. 2022–2035, 2020, doi: 10.1109/TWC.2019.2961673.
[19] M. Shaheen, M. S. Farooq, T. Umer, and B. S. Kim, “Applications of Federated Learning; Taxonomy,
Challenges, and Research Trends,” Electron., vol. 11, no. 4, Feb. 2022, doi: 10.3390/electronics11040670.
[20] M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing Multimodal Machine Learning
and Its Use in Cardiovascular Diseases Detection,” Electron., vol. 12, no. 7, pp. 1–30, 2023, doi:
10.3390/electronics12071558.