[1] F. S. Statistics and A. Economics, “The future of food and agriculture,” Agrifood Economics and Policy Division
(ESA), FAO. [Online]. Available: https://www.fao.org/global-perspectives-studies/en/
[2] V. Ramamurthy, G. P. O. Reddy, and N. Kumar, “Assessment of land suitability for maize (Zea mays L) in semi
arid ecosystem of southern India using integrated AHP and GIS approach,” Comput. Electron. Agric., vol. 179, p.
105806, 2020, doi: https://doi.org/10.1016/j.compag.2020.105806.
[3] Y. Faqir, A. Qayoom, E. Erasmus, M. Schutte-Smith, and H. G. Visser, “A review on the application of advanced
soil and plant sensors in the agriculture sector,” Comput. Electron. Agric., vol. 226, no. December 2023, p.
109385, 2024, doi: 10.1016/j.compag.2024.109385.
[4] P. Rajak, A. Ganguly, S. Adhikary, and S. Bhattacharya, “Internet of Things and smart sensors in agriculture:
Scopes and challenges,” J. Agric. Food Res., vol. 14, no. June, p. 100776, 2023, doi: 10.1016/j.jafr.2023.100776.
[5] A. J. Moshayedi, A. Sohail Khan, Y. Yang, J. Hu, and A. Kolahdooz, “Robots in Agriculture: Revolutionizing
Farming Practices,” EAI Endorsed Trans. AI Robot., vol. 3, 2024, doi: 10.4108/airo.5855.
[6] J. A. Soni, H. A. Patel, and R. B. Patel, “Semiconductor Innovations For AI-Driven Agricultural Sustainability : A Review Of Trends , Challenges , And Market Dynamics,” Int. J. Creat., vol. 13, no. 1, pp. h639–h648, 2025,
[Online]. Available: https://ijcrt.org/papers/IJCRT2501881.pdf
[7] A. P. Selvam, “The Impact of IoT and Sensor Integration on Real- Time Weather Monitoring Systems : A
Systematic Review,” pp. 1–71, 2023.
[8] L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis, “Machine Learning in Agriculture:
A Comprehensive Updated Review,” Sensors, vol. 21, no. 11, 2021, doi: 10.3390/s21113758.
[9] K. Sharma and S. K. Shivandu, “Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop
monitoring and management in precision agriculture,” Sensors Int., vol. 5, no. August, p. 100292, 2024, doi:
10.1016/j.sintl.2024.100292.
[10] K. Bhatt, C. Agrawal, and A. M. Bisen, “A Review on Emerging Applications of IoT and Sensor Technology for
Industry 4.0,” Wirel. Pers. Commun., vol. 134, no. 4, pp. 2371–2389, 2024, doi: 10.1007/s11277-024-11054-x.
[11] H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and F. Muralter, “A review of iot sensing applications
and challenges using RFID and wireless sensor networks,” Sensors (Switzerland), vol. 20, no. 9, pp. 1–18, 2020,
doi: 10.3390/s20092495.
[12] M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman, “Challenges, Applications, and Future of
Wireless Sensors in Internet of Things: A Review,” IEEE Sens. J., vol. 22, no. 6, pp. 5482–5494, 2022, doi:
10.1109/JSEN.2022.3148128.
[13] A. Choudhary, Internet of Things: a comprehensive overview, architectures, applications, simulation tools,
challenges and future directions, vol. 4, no. 1. Springer International Publishing, 2024. doi: 10.1007/s43926-024
00084-3.
[14] D. Sehrawat and N. S. Gill, “Smart Sensors: Analysis of Different Types of IoT Sensors,” in 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 523–528. doi:
10.1109/ICOEI.2019.8862778.
[15] L. Prusty, P. K. Swain, S. Satpathy, and S. Mahapatra, “Comprehensive Review of Security Challenges and Issues
in Wireless Sensor Networks Integrated with IoT,” in Explainable IoT Applications: A Demystification, S. N.
Mohanty, S. Satpathy, X. Cheng, and S. K. Pani, Eds., Cham: Springer Nature Switzerland, 2025, pp. 467–485.
doi: 10.1007/978-3-031-74885-1_30.
[16] H. Digital, “Artificial intelligence innovations in precision farming : Enhancing climate- resilient crop
management Artificial intelligence innovations in precision farming : Enhancing climate-resilient crop
management Dimple Patil,” no. November, 2024.
[17] S. Iftikhar et al., “AI-based fog and edge computing: A systematic review, taxonomy and future directions,”
Internet of Things (Netherlands), vol. 21, pp. 0–2, 2023, doi: 10.1016/j.iot.2022.100674.
[18] S. Tuli et al., “AI augmented Edge and Fog computing: Trends and challenges,” J. Netw. Comput. Appl., vol.
216, 2023, doi: 10.1016/j.jnca.2023.103648.
[19] Intelligence With Edge Computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, 2019, doi:
10.1109/JPROC.2019.2918951.
[20] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge Intelligence: The Confluence of Edge
Computing and Artificial Intelligence,” IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469, 2020, doi:
10.1109/JIOT.2020.2984887.
[21] W. Su, L. Li, F. Liu, M. He, and X. Liang, “AI on the edge: a comprehensive review,” Artif. Intell. Rev., vol. 55,
no. 8, pp. 6125–6183, 2022, doi: 10.1007/s10462-022-10141-4.
[22] S. Chaudhary, A. Jagarlapudi, and M. S. Raval, “Proceedings of National Conference on ’ GeneRative AI for
Nurturing National Conference on ‘ GeneRative AI for Nurturing Sustainable Agriculture Jointly organised by
Indian Society of Agricultural Information Technology ( INSAIT ) and Edited By J . Adinar,” no. January, 2025, doi: 10.13140/RG.2.2.36079.34725.
[23] Aashu, K. Rajwar, M. Pant, and K. Deep, “Application of Machine Learning in Agriculture: Recent Trends and
Future Research Avenues,” 2024, [Online]. Available: http://arxiv.org/abs/2405.17465
[24] Y. Lu, D. Chen, E. Olaniyi, and Y. Huang, “Generative adversarial networks (GANs) for image augmentation in
agriculture: A systematic review,” Comput. Electron. Agric., vol. 200, 2022, doi: 10.1016/j.compag.2022.107208.
[25] T. Chen et al., “Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey,” pp. 1–40, 2023, [Online].
Available: http://arxiv.org/abs/2305.01899
[26] R. L. de F. Cunha, B. Silva, and P. B. Avegliano, “A Comprehensive Modeling Approach for Crop Yield
Forecasts using AI-based Methods and Crop Simulation Models,” pp. 1–41, 2023, [Online]. Available:
http://arxiv.org/abs/2306.10121
[27] A. G.S, “Generative AI in Smart Agriculture: Opportunities and Challenges,” Int. J. Innov. Sci. Res. Technol., pp.
90–92, 2024, doi: 10.38124/ijisrt/IJISRT24NOV232.
[28] R. Sharma, “Artificial Intelligence in Agriculture: A Review,” 2021, pp. 937–942. doi:
10.1109/ICICCS51141.2021.9432187.
[29] G. Nagaraja, H. Shoba, S. Ms, and K. Pn, “The impact of robotics and drones on agricultural efficiency and
productivity,” vol. 7, no. 9, pp. 1001–1009, 2024.
[30] S. Neupane et al., “Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and
Opportunities,” IEEE Access, vol. 12, no. Ml, pp. 22072–22097, 2024, doi: 10.1109/ACCESS.2024.3363657.
[31] L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajnik, “Artificial Intelligence for Long-Term Robot
Autonomy: A Survey,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4023–4030, 2018, doi:
10.1109/LRA.2018.2860628.
[32] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review of recent research,” Adv. Robot., vol. 31,
no. 16, pp. 821–835, 2017, doi: 10.1080/01691864.2017.1365009.
[33] S. Nahavandi et al., “A Comprehensive Review on Autonomous Navigation,” vol. 1, no. 1, 2022, [Online].
Available: http://arxiv.org/abs/2212.12808
[34] A. T. Azar and A. Koubâa, Artificial intelligence for robotics and autonomous systems applications, 1st ed., vol.
1093. Springer Cham, 2023. [Online]. Available: https://link.springer.com/10.1007/978-3-031-28715-2
[35] M. Maroto-Gómez, F. Alonso-Martín, M. Malfaz, Á. Castro-González, J. C. Castillo, and M. Á. Salichs, A
Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots, vol.
15, no. 5. Springer Netherlands, 2023. doi: 10.1007/s12369-023-00977-3.
[36] A. Panwar, M. Khari, S. Misra, and U. Sugandh, “Blockchain in Agriculture to Ensure Trust, Effectiveness, and
Traceability from Farm Fields to Groceries,” Futur. Internet, vol. 15, no. 12, pp. 1–28, 2023, doi:
10.3390/fi15120404.
[37] L. Wang, M. Xiao, X. Guo, Y. Yang, Z. Zhang, and C. Lee, “Sensing Technologies for Outdoor/Indoor Farming,”
Biosensors, vol. 14, no. 12, 2024, doi: 10.3390/bios14120629.
[38] F. Assimakopoulos, C. Vassilakis, D. Margaris, K. Kotis, and D. Spiliotopoulos, “AI and Related Technologies in
the Fields of Smart Agriculture: A Review,” 2025. doi: 10.3390/info16020100.
[39] S. Samadder, S. P. Pandya, and S. P. Lal, “Bridging the Digital Divide in Agriculture: An Investigation to ICT
Adoption for Sustainable Farming Practices in Banaskantha District of Gujarat, India,” Int. J. Environ. Clim.
Chang., vol. 13, no. 9, pp. 1376–1384, 2023, doi: 10.9734/ijecc/2023/v13i92367.
[40] T. Mizik, “How can precision farming work on a small scale? A systematic literature review,” Precis. Agric., vol.
24, no. 1, pp. 384–406, 2023, doi: 10.1007/s11119-022-09934-y.
[41] M. McCaig, R. Dara, and D. Rezania, “Farmer-centric design thinking principles for smart farming technologies,” Internet of Things, vol. 23, p. 100898, 2023, doi: https://doi.org/10.1016/j.iot.2023.100898.
[42] R. Suvra Das, “Emerging Neuromorphic Computing for Edge AI Application: A Systematic Literature Review,” J.
Technol. Innov. Etd, no. July, 2020, [Online]. Available: http://jtipublishing.com/jti
[43] S. A. and S. R., “A systematic review of Explainable Artificial Intelligence models and applications: Recent
developments and future trends,” Decis. Anal. J., vol. 7, p. 100230, 2023, doi: 10.1016/j.dajour.2023.100230.
[44] S. Veysi, E. Galehban, M. Nouri, S. Mallah, and H. Nouri, “Comprehensive framework for interpretation of
WaPOR water productivity,” Heliyon, vol. 10, no. 16, p. e36350, 2024, doi:
https://doi.org/10.1016/j.heliyon.2024.e36350.
[45] S. Polymeni, S. Plastras, D. Skoutas, G. Kormentzas, and C. Skianis, “The Impact of 6G-IoT Technologies on the
Development of Agriculture 5.0: A Review,” Electronics, vol. 12, p. 2651, 2023, doi:
10.3390/electronics12122651.
[46] B. Yan, F. Zhang, M. Wang, Y. Zhang, and S. Fu, “Flexible wearable sensors for crop monitoring: a review,”
Front. Plant Sci., vol. 15, no. May, pp. 1–17, 2024, doi: 10.3389/fpls.2024.1406074.
[47] M. S. Memon et al., “Automatic visual recognition, detection and classification of weeds in cotton fields based on
machine vision,” Crop Prot., vol. 187, p. 106966, 2025, doi: https://doi.org/10.1016/j.cropro.2024.106966.